Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458517

RESUMO

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Remodelação das Vias Aéreas , Fenótipo Secretor Associado à Senescência , Miócitos de Músculo Liso , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno Tipo I , Proliferação de Células , Material Particulado/metabolismo , Células Cultivadas
2.
Am J Respir Cell Mol Biol ; 69(6): 678-688, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639326

RESUMO

Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI. However, the signaling pathways that lead to the cytoskeleton reorganization and lung microvascular EC barrier disruption remain largely unexplored. Here we show that LPS induces calpain activation and talin cleavage into head and rod domains and that inhibition of calpain attenuates talin cleavage, RhoA activation, and pulmonary EC barrier disruption in LPS-treated human lung microvascular ECs in vitro and lung EC barrier disruption and pulmonary edema induced by LPS in ALI in vivo. Moreover, overexpression of calpain causes talin cleavage and RhoA activation, myosin light chain (MLC) phosphorylation, and increases in actin stress fiber formation. Furthermore, knockdown of talin attenuates LPS-induced RhoA activation and MLC phosphorylation and increased stress fiber formation and mitigates LPS-induced lung microvascular endothelial barrier disruption. Additionally, overexpression of talin head and rod domains increases RhoA activation, MLC phosphorylation, and stress fiber formation and enhances lung endothelial barrier disruption. Finally, overexpression of cleavage-resistant talin mutant reduces LPS-induced increases in MLC phosphorylation in human lung microvascular ECs and attenuates LPS-induced lung microvascular endothelial barrier disruption. These results provide the first evidence that calpain mediates LPS-induced lung microvascular endothelial barrier disruption in ALI via cleavage of talin.


Assuntos
Lesão Pulmonar Aguda , Edema Pulmonar , Humanos , Lipopolissacarídeos/farmacologia , Calpaína/metabolismo , Talina/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Cadeias Leves de Miosina/metabolismo , Permeabilidade Capilar
3.
Med Oncol ; 40(7): 209, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347340

RESUMO

To evaluate the safety, feasibility, and survival benefit of radiofrequency ablation in liver-only recurrence pancreatic cancer patients after radical pancreatectomy. The data and follow-up of pancreatic cancer patients who suffered liver-only recurrence after radical pancreatectomy from 2015 to 2021 were retrospectively collected. Finally, 19 liver metastases radiofrequency ablation patients were assigned to radiofrequency ablation group, and 41 patients were to systemic treatment group. (1) the baseline, perioperative characteristics, and pathological outcomes were well-balanced. (2) Recurrence pattern showed there were more multiple (> 3) recurrence tumors in systemic treatment patients (multiple one vs. 19, P = 0.005). (3) Median radiofrequency ablation operation time was 30.0 min, median blood loss was 1.0 ml, 4 (21.05%) patients suffered postoperative complications, and 94.74% liver metastases tumors got complete necrosis. The first efficacy evaluation showed a significantly better effect of radiofrequency ablation, complete and partial response rate 72.22% vs. 27.78%, P < 0.001. Overall survival from the initial surgery and after liver recurrence was significantly longer in the radiofrequency ablation group (43.0 vs. 22.0 months, 29.0 vs. 14.0 months, P = 0.003, 0.006, respectively). Progression-free survival after treatment was longer in the radiofrequency ablation group (6.0 vs. 5.0 months, P = 0.029). For liver recurrence tumor ≤ 3, overall survival from the initial surgery and after liver recurrence was significantly longer in radiofrequency ablation patients (43.0 vs. 22.0 months, 29.0 vs. 14.0 months, P = 0.011, 0.013, respectively). Progression-free survival after treatment was longer in the radiofrequency ablation group (7.0 vs. 4.0 months, P = 0.042). Radiofrequency ablation could get a curative purpose for patients with liver-only recurrence after pancreatectomy, improve progression-free survival and overall survival, and with minor surgery damage and risk.


Assuntos
Ablação por Cateter , Neoplasias Hepáticas , Neoplasias Pancreáticas , Ablação por Radiofrequência , Humanos , Pancreatectomia , Estudos Retrospectivos , Recidiva Local de Neoplasia/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Neoplasias Pancreáticas
4.
Cell Commun Signal ; 21(1): 39, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803515

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is associated with increased incidence and severity of asthma. PM2.5 exposure disrupts airway epithelial cells, which elicits and sustains PM2.5-induced airway inflammation and remodeling. However, the mechanisms underlying development and exacerbation of PM2.5-induced asthma were still poorly understood. The aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a major circadian clock transcriptional activator that is also extensively expressed in peripheral tissues and plays a crucial role in organ and tissue metabolism. RESULTS: In this study, we found PM2.5 aggravated airway remodeling in mouse chronic asthma, and exacerbated asthma manifestation in mouse acute asthma. Next, low BMAL1 expression was found to be crucial for airway remodeling in PM2.5-challenged asthmatic mice. Subsequently, we confirmed that BMAL1 could bind and promote ubiquitination of p53, which can regulate p53 degradation and block its increase under normal conditions. However, PM2.5-induced BMAL1 inhibition resulted in up-regulation of p53 protein in bronchial epithelial cells, then increased-p53 promoted autophagy. Autophagy in bronchial epithelial cells mediated collagen-I synthesis as well as airway remodeling in asthma. CONCLUSIONS: Taken together, our results suggest that BMAL1/p53-mediated bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. This study highlights the functional importance of BMAL1-dependent p53 regulation during asthma, and provides a novel mechanistic insight into the therapeutic mechanisms of BMAL1. Video Abstract.


Assuntos
Fatores de Transcrição ARNTL , Asma , Animais , Camundongos , Remodelação das Vias Aéreas , Fatores de Transcrição ARNTL/metabolismo , Asma/metabolismo , Autofagia , Células Epiteliais/metabolismo , Material Particulado/toxicidade , Material Particulado/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Theranostics ; 12(10): 4513-4535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832075

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic disease with high mortality. Currently, pirfenidone and nintedanib are the only approved drugs for IPF by the U.S. Food and Drug Administration (FDA), but their efficacy is limited. The activation of multiple phosphotyrosine (pY) mediated signaling pathways underlying the pathological mechanism of IPF has been explored. A Src homology-2 (SH2) superbinder, which contains mutations of three amino acids (AAs) of natural SH2 domain has been shown to be able to block phosphotyrosine (pY) pathway. Therefore, we aimed to introduce SH2 superbinder into the treatment of IPF. Methods: We analyzed the database of IPF patients and examined pY levels in lung tissues from IPF patients. In primary lung fibroblasts obtained from IPF patient as well as bleomycin (BLM) treated mice, the cell proliferation, migration and differentiation associated with pY were investigated and the anti-fibrotic effect of SH2 superbinder was also tested. In vivo, we further verified the safety and effectiveness of SH2 superbinder in multiple BLM mice models. We also compared the anti-fibrotic effect and side-effect of SH2 superbinder and nintedanib in vivo. Results: The data showed that the cytokines and growth factors pathways which directly correlated to pY levels were significantly enriched in IPF. High pY levels were found to induce abnormal proliferation, migration and differentiation of lung fibroblasts. SH2 superbinder blocked pY-mediated signaling pathways and suppress pulmonary fibrosis by targeting high pY levels in fibroblasts. SH2 superbinder had better therapeutic effect and less side-effect compare to nintedanib in vivo. Conclusions: SH2 superbinder had significant anti-fibrotic effects both in vitro and in vivo, which could be used as a promising therapy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Proliferação de Células , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Fosfotirosina/química , Fosfotirosina/metabolismo , Fosfotirosina/farmacologia
6.
J Cell Physiol ; 237(1): 566-579, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231213

RESUMO

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fatores de Despolimerização de Actina/metabolismo , Animais , Bleomicina/farmacologia , Calpaína/metabolismo , Movimento Celular , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Camundongos , Fator de Crescimento Transformador beta1/metabolismo
7.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33905374

RESUMO

Pleural fibrosis is defined as an excessive deposition of extracellular matrix that results in destruction of the normal pleural tissue architecture and compromised function. Tuberculous pleurisy, asbestos injury, and rheumatoid pleurisy are main causes of pleural fibrosis. Pleural mesothelial cells (PMCs) play a key role in pleural fibrosis. However, detailed mechanisms are poorly understood. Serine/arginine-rich protein SRSF6 belongs to a family of highly conserved RNA-binding splicing-factor proteins. Based on its known functions, SRSF6 should be expected to play a role in fibrotic diseases. However, the role of SRSF6 in pleural fibrosis remains unknown. In this study, SRSF6 protein was found to be increased in cells of tuberculous pleural effusions (TBPE) from patients, and decellularized TBPE, bleomycin, and TGF-ß1 were confirmed to increase SRSF6 levels in PMCs. In vitro, SRSF6 mediated PMC proliferation and synthesis of the main fibrotic protein COL1A2. In vivo, SRSF6 inhibition prevented mouse experimental pleural fibrosis. Finally, activated SMAD2/3, increased SOX4, and depressed miRNA-506-3p were associated with SRSF6 upregulation in PMCs. These observations support a model in which SRSF6 induces pleural fibrosis through a cluster pathway, including SRSF6/WNT5A and SRSF6/SMAD1/5/9 signaling. In conclusion, we propose inhibition of the splicing factor SRSF6 as a strategy for treatment of pleural fibrosis.


Assuntos
Fibrose/metabolismo , Fosfoproteínas , Pleura/metabolismo , Doenças Pleurais/metabolismo , Fatores de Processamento de Serina-Arginina , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais
8.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L990-L1004, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787325

RESUMO

The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is subpleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the subpleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intraperitoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of patients with IPF were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability; increased PMCs permeability aggravated bleomycin-induced subpleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced subpleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in subpleural area in patients with IPF. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to subpleural pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Permeabilidade/efeitos dos fármacos , Pleura/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pleura/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
9.
Front Hum Neurosci ; 14: 519171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250726

RESUMO

Purpose: To examine cerebral cortical activation differences in the frontal cortex and parietal lobe during the performance of two types of dumbbell exercise. Methods: A total of 22 young healthy male adults (mean age, 23.8 ± 2.05 years; height, 1.75 ± 0.06 m; weight, 71.4 ± 8.80 kg) participated in a crossover design study that involved two experimental exercise conditions: momentum dumbbell and conventional dumbbell. Performance tasks included 10, 10-s sets of single-arm dumbbell exercise, with a rest interval of 60 s between sets and a 5-min washout period between conditions. The primary outcome was the cerebral concentrations of oxygenated hemoglobin (HbO2) in the frontal cortex and parietal lobe assessed during performance of both exercises using functional near-infrared spectroscopy (fNIRS). The secondary outcome was upper-limb muscle activation measured using surface electromyography (sEMG). Outcome data were ascertained during exercise. Results: A significant between-condition difference in HbO2 was observed in the frontal and parietal regions with an increase in HbO2 during momentum, relative to conventional, dumbbell exercise (p < 0.05). Compared to conventional dumbbell exercise, performing a momentum dumbbell exercise led to a higher level of muscle activation in the anterior and posterior deltoids of the upper arm and in the flexor carpi radialis and extensor carpi radialis longus of the forearm (p < 0.05). However, no between-condition differences were found in the biceps and triceps brachii (p > 0.05). Conclusion: Dynamic, compared with conventional, dumbbell exercise resulted in higher hemodynamic responses and greater upper-limb muscle activation in young healthy adults. The findings of this study showed differential cortical hemodynamic responses during performance of the two types of dumbbell exercise with a higher activation level produced during momentum-based dumbbell exercise.

10.
Exp Cell Res ; 396(1): 112295, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971116

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrosing interstitial lung disease with limited therapeutic options and a median survival of 3 years after diagnosis. Dysregulated epithelial regeneration is key event involved in initiating and sustaining IPF. The type II alveolar epithelial cells (AECIIs) play a crucial role for epithelial regeneration and stabilisation of alveoli. Loss of cell apical-basal polarity contributes to fibrosis. AECII has apical-basal polarity, but it is poorly understood whether AECII apical-basal polarity loss is involved in fibrosis. Bleomycin is a traditional inducer of pulmonary fibrosis. Here firstly we observed that bleomycin induced apical-basal polarity loss in cultured AECIIs. Next, cell polarity proteins lethal (2) giant larvae 1 (Lgl1), PAR-3A, aPKC and PAR-6B were investigated. We found bleomycin induced increases of Lgl1 protein and decreases of PAR-3A protein, and bleomycin-induced PAR-3A depression was mediated by increased-Lgl1. Then Lgl1 siRNA was transfected into AECIIs. Lgl1 siRNA prevented apical-basal polarity loss in bleomycin-treated AECIIs. At last, Lgl1-conditional knockout mice were applied in making animal models. Bleomycin induced pulmonary fibrosis, but this was attenuated in Lgl1-conditional knockout mice. Together, these data indicated that bleomycin mediated AECII apical-basal polarity loss which contributed to experimental pulmonary fibrosis. Inhibition of Lgl1 should be a potential therapeutic strategy for the disease.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Bleomicina/farmacologia , Polaridade Celular/efeitos dos fármacos , Glicoproteínas/genética , Fibrose Pulmonar/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Polaridade Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Knockout , Cultura Primária de Células , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais
11.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118806, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739525

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive and fibrosing interstitial pneumonia of unknown cause. The main feature of IPF is a heterogeneous appearance with areas of sub-pleural fibrosis. However, the mechanism of sub-pleural fibrosis was poorly understood. In this study, our in vivo study revealed that pleural mesothelial cells (PMCs) migrated into lung parenchyma and localized alongside lung fibroblasts in sub-pleural area in mouse pulmonary fibrosis. Our in vitro study displayed that cultured-PMCs-medium induced lung fibroblasts transforming into myofibroblast, cultured-fibroblasts-medium promoted mesothelial-mesenchymal transition of PMCs. Furthermore, these changes in lung fibroblasts and PMCs were prevented by blocking TGF-ß1/Smad2/3 signaling with SB431542. TGF-ß1 neutralized antibody attenuated bleomycin-induced pulmonary fibrosis. Similar to TGF-ß1/Smad2/3 signaling, wnt/ß-catenin signaling was also activated in the process of PMCs crosstalk with lung fibroblasts. Moreover, inhibition of CD147 attenuated cultured-PMCs-medium induced collagen-I synthesis in lung fibroblasts. Blocking CD147 signaling also prevented bleomycin-induced pulmonary fibrosis. Our data indicated that crosstalk between PMC and lung fibroblast contributed to sub-pleural pulmonary fibrosis. TGF-ß1, Wnt/ß-catenin and CD147 signaling was involved in the underling mechanism.


Assuntos
Epitélio/efeitos dos fármacos , Pulmão/metabolismo , Pleura/efeitos dos fármacos , Fibrose Pulmonar/genética , Animais , Benzamidas/farmacologia , Movimento Celular/genética , Dioxóis/farmacologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Epitélio/patologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Pleura/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Fator de Crescimento Transformador beta1/genética
13.
EBioMedicine ; 41: 670-682, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30850350

RESUMO

BACKGROUND: Pleural fibrosis is defined as excessive depositions of matrix components that result in pleural tissue architecture destruction and dysfunction. In severe cases, the progression of pleural fibrosis leads to lung entrapment, resulting in dyspnea and respiratory failure. However, the mechanism of pleural fibrosis is poorly understood. METHODS: miR-4739 levels were detected by miRNA array and real-time PCR. Real-time PCR, western blotting and immunofluorescence were used to identify the expression profile of indicators related to fibrosis. Target gene of miR-4739 and promoter activity assay was measured by using dual-luciferase reporter assay system. In vivo, pleural fibrosis was evaluated by Masson staining and miR-4739 level was detected by In situ hybridization histochemistry. FINDINGS: We found that bleomycin induced up-regulation of miR-4739 in pleural mesothelial cells (PMCs). Over-regulated miR-4739 mediated mesothelial-mesenchymal transition and increased collagen-I synthesis in PMCs. Investigation on the clinical specimens revealed that high levels of miR-4739 and low levels of bone morphogenetic protein 7 (BMP-7) associated with pleural fibrosis in patients. Then we next identified that miR-4739 targeted and down-regulated BMP-7 which further resulted in unbalance between Smad1/5/9 and Smad2/3 signaling. Lastly, in vivo studies revealed that miR-4739 over-expression induced pleural fibrosis, and exogenous BMP-7 prevented pleural fibrosis in mice. INTERPRETATION: Our data indicated that miR-4739 targets BMP-7 which mediates pleural fibrosis. The miR-4739/BMP-7 axis is a promising therapeutic target for the disease. FUND: The National Natural Science Foundation of China.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Bleomicina/farmacologia , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/genética , Colágeno Tipo I/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pleura/citologia , Regiões Promotoras Genéticas , Ratos , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Toxicol Lett ; 303: 1-8, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572104

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death. The cause of IPF is poorly understood. Although several environmental and occupational factors are considered as risk factors in IPF, cigarette smoking seems to be the most strongly associated risk factor. Here firstly, we treated mice with cigarette (16 mg tar, 1.0 mg nicotine in each cigarette) smoking and tried to explore the role of cigarette smoking in pulmonary fibrosis. Mice were continuously subjected to smoke for about 1 h each day (12 cigarettes per day, 5 days per week) during 40 days. Bleomycin was administrated by intraperitoneal injection at a dose of 40 mg/kg on days 1, 5, 8, 11 and 15. We found bleomycin induced pulmonary fibrosis in mice, and cigarette smoking augmented bleomycin-induced fibrosis reflected by both in fibrotic area and percentages of collagen in the lungs. Then we prepared and employed cigarette smoke extract (CSE) in cell models and found that CSE could induce the activation of p-Smad2/3 and p-Akt, as well as collagen-I synthesis and cell proliferation in lung fibroblasts and pleural mesothelial cells (PMCs). TGF-ß1 signaling mediated CSE-induced PMCs migration. Moreover, in vitro studies revealed that CSE had superimposed effect on bleomycin-induced activation of TGF-ß-Smad2/3 and -Akt signaling. TGF-ß-Smad2/3 and -Akt signaling were further augmented by cigarette smoking in the lung of bleomycin-treated mice. Taken together, these findings represent the first evidence that cigarette smoking aggravated bleomycin-induced pulmonary fibrosis via TGF-ß1 signaling.


Assuntos
Bleomicina/toxicidade , Fumar Cigarros/efeitos adversos , Fibrose Pulmonar Idiopática/patologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fatores de Risco , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1201-1210, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29842893

RESUMO

Pleural fibrosis is barely reversible and the underlying mechanisms are poorly understood. Pleural mesothelial cells (PMCs) which have apical-basal polarity play a key role in pleural fibrosis. Loss of cell polarity is involved in the development of fibrotic diseases. Partition defective protein (PAR) complex is a key regulator of cell polarity. However, changes of PMC polarity and PAR complex in pleural fibrosis are still unknown. In this study, we observed that PMC polarity was lost in fibrotic pleura. Next we found increased Lethal (2) giant larvae (Lgl) bound with aPKC and PAR-6B competing against PAR-3A in PAR complex, which led to cell polarity loss. Then we demonstrated that Lgl1 siRNA prevented cell polarity loss in PMCs, and Lgl1 conditional knockout (ER-Cre+/-Lgl1flox/flox) attenuated pleural fibrosis in a mouse model. Our data indicated that Lgl1 regulates cell polarity of PMCs, inhibition of Lgl1 and maintenance of cell polarity in PMCs could be a potential therapeutic treatment approach for pleural fibrosis.


Assuntos
Células Epiteliais/citologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Pleura/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Fibrose , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Pleura/metabolismo , Proteína Quinase C/metabolismo , Ratos
17.
Pulm Pharmacol Ther ; 48: 46-52, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107090

RESUMO

Pleural fibrosis is associated with various inflammatory processes such as tuberculous pleurisy and bacterial empyema. There is currently no ideal therapeutic to attenuate pleural fibrosis. Some pro-fibrogenic mediators induce fibrosis through inflammatory processes, suggesting that blockage of these mediators might prevent pleural fibrosis. The MeT-5A human pleural mesothelial cell line (PMC) was used in this study as an in vitro model of fibrosis; and intra-pleural injection of bleomycin with carbon particles was used as an in vivo mouse model of pleural fibrosis. Calpain knockout mice, calpain inhibitor (calpeptin), and angiotensin (Ang) II type 1 receptor (AT1R) antagonist (losartan) were evaluated in prevention of experimental pleural fibrosis. We found that bleomycin and carbon particles induced calpain activation in cultured PMCs. This in vitro response was associated with increased collagen-I synthesis, and was blocked by calpain inhibitor or AT1R antagonist. Calpain genetic or treatment with calpeptin or losartan prevented pleural fibrosis in a mouse model induced by bleomycin and carbon particles. Our findings indicate that Ang II signaling and calpain activation induce collagen-I synthesis and contribute to fibrotic alterations in pleural fibrosis. Inhibition of Ang II and calpain might therefore be a novel strategy in treatment of pleural fibrosis.


Assuntos
Calpaína/genética , Dipeptídeos/farmacologia , Losartan/farmacologia , Doenças Pleurais/tratamento farmacológico , Angiotensina II/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Bleomicina/toxicidade , Calpaína/antagonistas & inibidores , Carbono/toxicidade , Linhagem Celular , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Pleurais/fisiopatologia
18.
Clin Epigenetics ; 9: 115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075358

RESUMO

BACKGROUND: ZNF331 was reported to be a transcriptional repressor. Methylation of the promoter region of ZNF331 has been found frequently in human esophageal and gastric cancers. The function and methylation status of ZNF331 remain to be elucidated in human colorectal cancer (CRC). METHODS: Six colorectal cancer cell lines, 146 cases of primary colorectal cancer samples, and 10 cases of noncancerous colorectal mucosa were analyzed in this study using the following techniques: methylation specific PCR (MSP), qRT-PCR, siRNA, flow cytometry, xenograft mice, MTT, colony formation, and transfection assays. RESULTS: Loss of ZNF331 expression was found in DLD1 and SW48 cells, reduced expression was found in SW480, SW620, and HCT116 cells, and high level expression was detected in DKO cells. Complete methylation of the ZNF331 in the promoter region was found in DLD1 and SW48 cells, partial methylation was found in SW480, SW620, and HCT116 cells, and unmethylation was detected in DKO cells. Loss of/reduced expression of ZNF331 is correlated with promoter region methylation. Restoration of ZNF331 expression was induced by 5-aza-2'-deoxycytidine (DAC) in DLD1 and SW48 cells. These results suggest that ZNF331 expression is regulated by promoter region methylation in CRC cells. ZNF331 was methylated in 67.1% (98/146) of human primary colorectal cancer samples. Methylation of ZNF331 was significantly associated with tumor size, overall survival (OS), and disease-free survival (DFS) (p < 0.01, p < 0.01, p < 0.05). Methylation of ZNF331 was an independent poor prognostic marker for 5-year OS and 5-year DFS (both p < 0.05). ZNF331 suppressed cell proliferation and colony formation in CRC cells and suppressed human CRC cell xenograft growth in mice. CONCLUSIONS: ZNF331 is frequently methylated in human colorectal cancer, and the expression of ZNF331 is regulated by promoter region methylation. Methylation of ZNF331 is a poor prognostic marker of CRC.


Assuntos
Neoplasias Colorretais/patologia , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteínas de Neoplasias/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Prognóstico , Regiões Promotoras Genéticas , Análise de Sobrevida , Carga Tumoral
19.
Mol Ther ; 25(3): 728-738, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28131417

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death within 3-5 years of diagnosis. Sub-pleural pulmonary fibrosis is a pathological hallmark of IPF. Bleomycin treatment of mice is a an established pulmonary fibrosis model. We recently showed that bleomycin-induced epithelial-mesenchymal transition (EMT) contributes to pleural mesothelial cell (PMC) migration and sub-pleural pulmonary fibrosis. MicroRNA (miRNA) expression has recently been implicated in the pathogenesis of IPF. However, changes in miRNA expression in PMCs and sub-pleural fibrosis have not been reported. Using cultured PMCs and a pulmonary fibrosis animal model, we found that miR-18a-5p was reduced in PMCs treated with bleomycin and that downregulation of miR-18a-5p contributed to EMT of PMCs. Furthermore, we determined that miR-18a-5p binds to the 3' UTR region of transforming growth factor ß receptor II (TGF-ßRII) mRNA, and this is associated with reduced TGF-ßRII expression and suppression of TGF-ß-Smad2/3 signaling. Overexpression of miR-18a-5p prevented bleomycin-induced EMT of PMC and inhibited bleomycin-induced sub-pleural fibrosis in mice. Taken together, our data indicate that downregulated miR-18a-5p mediates sub-pleural pulmonary fibrosis through upregulation of its target, TGF-ßRII, and that overexpression of miR-18a-5p might therefore provide a novel approach to the treatment of IPF.


Assuntos
Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Receptores de Fatores de Crescimento Transformadores beta/genética , Animais , Bleomicina/farmacologia , Gatos , Movimento Celular/genética , Análise por Conglomerados , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Pleura/metabolismo , Pleura/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
20.
PLoS One ; 11(10): e0164918, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27783699

RESUMO

The increased incidence of stress urinary incontinence (SUI) in postmenopausal women has been proposed to be associated with a reduction in the level of 17-ß estradiol (E2). E2 has also been shown to enhance the multi-differentiation ability of adipose-derived stem cells (ASCs) in vitro. However, studies on the potential value of E2 for tissue engineering in SUI treatment are rare. In the present study, we successfully fabricated myogenically differentiated ASCs (MD-ASCs), which were seeded onto a Poly(l-lactide)/Poly(e-caprolactone) electrospinning nano-scaffold, and incorporated E2 into the system, with the aim of improving the proliferation and myogenic differentiation of ASCs. ASCs were collected from the inguinal subcutaneous fat of rats. The proliferation and myogenic differentiation of ASCs, as well as the nano-scaffold biocompatibility of MD-ASCs, with or without E2 supplementation, were investigated. We demonstrated that E2 incorporation enhanced the proliferation of ASCs in vitro, and the most optimal concentration was 10-9 M. E2 also led to modulation of the MD-ASCs phenotype toward a concentrated type with smooth muscle-inductive medium. The expression of early (alpha-smooth muscle actin), mid (calponin), and late-stage (myosin heavy chain) contractile markers in MD-ASCs was enhanced by E2 during the different differentiation stages. Furthermore, the nano-scaffold was biocompatible with MD-ASCs, and cell proliferation was significantly enhanced by E2. Taken together, these results demonstrate that E2 can enhance the proliferation and myogenic differentiation of ASCs and can be used to construct a biocompatible cell/nano-scaffold. These scaffolds with desirable differentiation cells show promising applications for tissue engineering.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Estradiol/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Nanoestruturas , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual , Animais , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estudos de Viabilidade , Regulação da Expressão Gênica/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Nanotecnologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...